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Abstract

Reconstruction of two-dimensional images by filtered back-projection (FBP) and by the maximum entropy method (MEM) was com-
pared for spectral-spatial EPR images with differing signal-to-noise ratios. Experimental projections were recorded using direct-detected
rapid scans in the presence of a series of magnetic field gradients. The slow-scan absorption lineshapes were calculated by Fourier decon-
volution. A Hamming filter was used in conjunction with FBP, but not for MEM. Imperfections in real experimental data, as well as
random noise, contribute to discrepancies between the reconstructed image and experimental projections, which may make it impossible
to achieve the customary MEM criterion for convergence. The Cambridge MEM algorithm, with allowance for imperfections in exper-
imental data, produced images with more linear intensity scales and more accurate linewidths for weak signals than was obtained with
another MEM method. The more effective elimination of noise in baseline regions by MEM made it possible to detect weak trityl '*C
trityl hyperfine lines that could not be distinguished from noise in images reconstructed by FBP. Another advantage of MEM is that
projections do not need to be equally spaced. FBP has the advantages that computational time is less, the amplitude scale is linear,
and there is less noise superimposed on peaks in images. It is useful to reconstruct images by both methods and compare results.
Our observations indicate that FBP works well when the number of projections is large enough that the star effect is negligible. When
there is a smaller number of projections, projections are unequally spaced, and/or signal-to-noise is lower MEM is advantageous.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Reconstruction of most real-world images is based on
finite data sets with superimposed noise. Some information
about the object always is lost in the data acquisition,
which limits the accuracy of the reconstructed image. The
challenge is to find the ““best” image with the least noise
and fewest artifacts.

Filtered backprojection (FBP) was initially used in X-
ray tomography to create images from projections. Now
it is widely used in other imaging modalities where the data
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are integrated values for some parameter along lines
through the object to be characterized [1]. In EPR imaging
spectra measured in the presence of a magnetic field gradi-
ent are mathematically homologous to X-ray projections
collected with parallel beams for each viewing angle. FBP
is computationally fast, accurate, easily implemented [2],
and widely used in commercial instrumentation. However,
there are inherent limitations to FBP. Projections must be
collected with equal angle increments to encompass 180°. If
too few projections are used to construct an image, ridges
radiate out from sharp features in the image, which is
called the “‘star” or “‘streaking” effect. Reconstruction of
an image from a data set that does not include projections
over a full 180° range (a missing angle data set) results in
ridges at angles that correspond to the edges of the angular
range that would have been sampled by the missing projec-
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tions. These ridges can be partially mitigated by iterative
reconstruction and estimates of the missing projections
[3,4]. For many physical observables it is known that the
quantities must be positive, so a non-negativity constraint
can be used to decrease some artifacts.

In practice there are time and/or instrumental con-
straints that limit the signal-to-noise and/or number of
projections that can be acquired, so it is important that a
reconstruction algorithm work well with a limited number
of projections and limited signal-to-noise. Since the signal
is broadened by the magnetic field gradient, the signal-to-
noise is poorer at the higher magnetic field gradients that
are needed to enhance spatial resolution [5]. It has also
been pointed out that, depending upon the characteristics
of the object to be imaged, some projections may be more
informative than others [6,7] and there may be cases in
which the smallest number of projections required to ade-
quately define an object could be achieved with unequally
spaced projections. These factors all indicate the need to
compare FBP with other reconstruction algorithms.

An alternative to FBP is the maximum entropy method
(MEM). From a very large set of possible images that are
consistent with experimental data, the one with the maxi-
mum entropy can be identified as the “best” [8,9]. MEM
has been applied to a variety of problems in mathematics,
astronomy, physics, technology, biology, etc. (see, for
example [8-14]). In magnetic resonance, its applications
have been primarily in spectroscopy to suppress baseline
noise and simultaneously improve resolution [15,16]. Many
successful applications of MEM are in multidimensional
NMR spectroscopy, where useful signals occupy only a
small fraction of the area of the image which is therefore
called a ‘nearly black’ image. By contrast, a typical EPR
image is unlikely to be nearly black. One concern is that
the relative intensities and line widths of signals in images
generated by MEM may be altered, which complicates sig-
nal quantitation. Non-linear distortions can, however, be
accurately calibrated by adding to the experimental data
synthetic signals with known properties. Non-linear distor-
tion of these signals can be used to correct intensities of
experimental peaks [10].

There have been a small number of conflicting reports on
the utility of MEM for magnetic resonance (MR) image
reconstruction. Although Constable and Henkelman [17]
concluded that MEM “‘does not work” for MR image recon-
struction, Smith et al. [18] and Johnson et al. [19] demon-
strated that when MEM was applied to a 2D EPR image,
baseline noise was suppressed and images could be recon-
structed from smaller numbers of projections without inter-
ference from the “‘star” effect. An important distinction
between the images examined in the two studies was that
the MRI data were acquired in the time domain, which cre-
ates an array of evenly spaced points in k-space that can be
Fourier transformed to generate an image. In contrast, the
EPR projections were acquired as equally spaced points in
the signal domain, which corresponds in the frequency
domain to a set of radial rays through a central point.

In the present study, we seek to determine the advanta-
ges and disadvantages of the FBP and MEM methods for
reconstruction of rapid-scan spectral-spatial EPR images.
These images display the EPR spectrum as a function of
position in the sample [5]. Accurate spectral lineshapes
are important for interpretation of information in the
image. It was therefore of interest to compare images
reconstructed with the two techniques from data that con-
tained varying amounts of noise.

1.1. Implementations of MEM

MEM has been implemented in ways that differ in the
expression for entropy and in the mathematical procedure
that is used to maximize the criterion, Q(f) [14,20-22].

o(f) = S(f) = 2C(), (1)

where S(f) is the entropy, 4 is the Lagrange multiplier, C(f)
is a measure of the discrepancy between a reconstructed
image and the experimental data, and f is the 1D array
of N points in the reconstructed image.

) =7 =Y (RU)) —Du)’ /o, 2)
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where M is the number of experimental data points, oy is
the standard deviation of the noise that can be defined as
the variance for an individual point or the width of the
Gaussian distribution for baseline points, Dy is the experi-
mental data, and R is the operator appropriate for the
experiment. For an EPR image, R is the Radon transfor-
mation and for NMR data collected in the time-domain,
R is the Fourier transform.

The Lagrange multiplier 4 in Eq. (1) determines the rel-
ative weights of S(f) and C(f). For each value of 4, solution
of Eq. (1) gives a different image f;. In the limit of large 4,
the role of entropy is reduced and the reconstructed image
contains noise, experimental artifacts and other informa-
tion that is not strongly supported by the data. Decreasing
A results in poorer agreement between the image and the
experimental data, but the information contained in the
image is considered to be more reliable. In the limit of
A =0, maximization of Q(f) = S(f) gives an image with
no information derived from the experimental data. It is
commonly accepted that one should select A such that
C(f) = M. In this case, the reconstructed image fits the data
to within the limitations of the noise. Some MEM algo-
rithms vary A iteratively until C(f) = M [23,24]. Since prob-
ability is inherently positive, non-negativity is an inherent
property of the method.

The entropy, S(f), can be defined in different ways that
originate from the Shannon formula [25,26]

S(f) == _filog(f)- (3)
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Since the f; values are interpreted as probabilities,
Zf\’ fi = 1, which provides an additional constraint on the
algorithm.

Alternatively, entropy can be defined as [27]:

S(f) = =D _ fillog(fi/for) =11, (4)

where f, is a ‘default’ image, to which f; will tend if the
parameter A in Eq. (1) is very small. In most MEM appli-
cations, fj is chosen to be flat. If some a priori information
about the image to be reconstructed is available it can be
helpful to incorporate this information into the ‘default’
image (see, for example, [28]).

In the unique maximum entropy image the gradients V.S
and VC are parallel. The non-parallelism between these
two vectors is estimated by the equation:

1|VS VC
TEST__2|VS| vl ()
The ideal situation with TEST = 0 is often difficult to reach
and more modest criteria have to be used. It is suggested
[27] that the iteration process can be terminated when value
C(f) = Aim is reached provided TEST < 0.1. Aim usually is
equal to M. In this case, the reconstructed image can be
considered as the unique maximum entropy image.

In this study, the Cambridge algorithm for MEM [27] is
compared with the algorithm used by Smith and Stevens
[18]. Instead of treating A as an input parameter that must
be optimized [18], the focus of the Cambridge algorithm
[27] is on minimizing C(f) while maximizing S(f). While
in other algorithms the next approximation of the image
is searched along a single direction, the Cambridge algo-
rithm uses a more efficient multidimensional (normally
three) method, based on vectors constructed from the first
and second derivatives of the functions C(f) and S(f).

1.2. Specific considerations for spectral-spatial EPR imaging

From a mathematical point of view, the difference
between most NMR applications and EPRI is in the use
of different operators R (see Eq. 2). For most NMR appli-
cations R is Fourier transformation. By applying inverse
Fourier transformation to experimental data one can
always find an image that fits the experimental data exact-
ly, fuxact = R~'D. However, this is not what people usually
want. Any distortions in the data, such as noise, are incor-
porated into the resulting image so the exact image may
not be the ‘best’ representation of the object. MEM algo-
rithms may help to obtain an image that does not fit the
data as well as fex,o¢ does but MEM outputs can be consid-
ered as more reliable. If Radon transformation is used as in
the case of EPRI, consistency of all the projections
becomes important. Any inconsistency in the data such
as random noise and signal distortion by hardware and
data acquisition imperfections make it impossible to find

an exact image. In other words, no image can be found that
exactly fits the data, so R(fexact) # D and C(f) > 0.

For in vivo or rapid-scan EPR imaging experiments, in
addition to random noise there are distortions such as
instability of baseline and of resonator frequency. Shifts
in resonator frequency cause shifts of the EPR spectra
and may be accompanied by phase shifts that cause disper-
sion signal admixture. Small frequency shifts cause broad-
ening of peaks in the reconstructed image and larger shifts
could result in spurious peaks. The discrepancy between
the experimental projection and the ideal projection caused
by a frequency shift may be larger than random noise in the
regions with high signal intensities and may vanish where
intensities are close to baseline.

In the papers that applied MEM to reconstruction in
EPRI [18,19], Eq. (2) was applied assuming constant
o, = o, which implies that there is a normal distribution
of misfit errors with standard deviation o:

[(R())i = Dil < 0. (6)

However, as noted above distortions caused by hardware
imperfections may be much larger in some regions of the
dataset than noise level. In this case all distortions that ex-
ceed noise level are introduced into the final reconstructed
image. On the other hand, the use of a larger constant ¢
that is high enough to take all distortions into consider-
ation is not suitable for the regions where random noise
dominates. It is equivalent to noise level overestimation.
In this situation the constraint C(f) = M may not be reach-
able at all and is no longer useful. The standard deviation
oy in Eq. (2) could be substituted by an effective ¢ that
takes both distortions and random noise into consider-
ation. In this case, the algorithm can search for the image
with maximum entropy provided that C(f) = M is fulfilled.
In the present paper, two ways to adjust o, are compared.

2. Experimental
2.1. Sample preparation

Lithium phthalocyanine (LiPc) prepared electrochemi-
cally following procedures in the literature [29,30] was pro-
vided by Prof. Swartz, Dartmouth University. Well-shaped
needles were selected, placed in a 4 mm OD (3 mm ID)
quartz tube, evacuated overnight on a high vacuum line,
and then the tube was flame sealed. A solution (0.5 mM)
of Nycomed trityl-CD5; (methyl-tris(8-carboxy-2,2,6,6-tet-
ramethyl(ds)-benzo[1,2-d:4,5-d'|bis(1,3)dithiol-4-yl)tri-po-
tassium salt) in water was placed in a 10 mm OD (9 mm
ID) tube, degassed by bubbling with N, and then flame
sealed. The distance between the centers of the two tubes
was 11 mm.

2.2. Magnets, gradient coils, resonator

Rapid scan signals at 250 MHz were obtained on a
locally designed and built spectrometer [31]. A 4-coil
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air-core magnet with a pair of Z-gradient (Maxwell) coils
to produce the gradients [32] was used. The Hall probe
was located in an auxiliary magnet coil system connected
in series with the main magnet [33]. To allow setting of
the dc magnetic field with 10 times greater resolution than
is available in the Bruker software at the low magnetic
fields required for these experiments, the auxiliary magnet
system had a coil constant 10 times greater than the magnet
that was used for the experiments, but otherwise is similar
to that described in [33].

The resonator was constructed from 6 equally spaced
turns of no. 20 copper wire [31]. It has an internal diameter
of 25 mm and height of 50 mm. The spacing between the
turns is 10 mm. The turns were series capacitively coupled
using Voltronics 25 series non-magnetic porcelain chip
capacitors. The resonator frequency was tuned using a
combination of 10 and 3.7 pF capacitors. With the sample
in the resonator, the resonant frequency was 246.73 MHz.
The measured Q of the empty resonator was 155 + 5. The
resonator efficiency (B;/\/P) was determined to be
0.35 + 0.05 G/y/Watt [31]. The resonator and the scan coil
assembly were shielded using a non-magnetic aluminum
stock pot that is 33 cm in diameter and 26 cm high. Electri-
cal contact between the pot and its cover was achieved with
finger stock. Having the shield outside the scan coils helps
to eliminate field inhomogeneities produced by the eddy
currents that are observed when the shield is between the
scan coils and the resonator. Calibration of the scan widths
gave a field constant of 10.8 & 0.2 G/A.
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2.3. Spectroscopy

The imaging experiments were performed with 60
experimental projections (4 missing projections) using the
missing angle data acquisition algorithms for 2D spectral-
spatial imaging [34,35]. Projections were equally spaced
between —82.97° and +82.97°. Rapid scan signals were
recorded using triangular scans with modulation frequen-
cies in the range of 1-8 kHz and scan widths in the range
of 0.85-6.93 G. The RF power was 0.44 mW. A 4th order
hardware Butterworth filter (Krohn-Hite model 3955) was
used with a cutoff frequency of 1 MHz and input and
output gain of 20 dB. To test the sensitivity of the recon-
struction algorithms to experimental noise, two data sets
were recorded for each projection. One data set was taken
by averaging 5000 scans, for which many projections have
relatively low signal-to-noise (S/N), and the second data set
was averaged for 50,000 scans, which gives significantly
improved S/N. The slow-scan lineshapes were recovered
from the rapid-scan spectra using Fourier deconvolution
[31]. Typical projections at low and high gradient are
shown in Fig. 1. Comparison spectra that are denoted as
“slow scan” were recorded in rapid-scan mode using a scan
frequency (700 Hz) and scan width (0.6 G) for which the
scan rate is low enough that a slow-scan absorption signal
was obtained, or as conventional slow-scan spectra.

To test the impact of the number of projections on the
image reconstruction algorithms a set of 30 projections
(assuming 2 missing projections) was calculated from each

Intensity {a.u.)
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Fig. 1. Rapid scan projections in the presence of magnetic field gradients, after Fourier deconvolution to recover the slow-scan lineshapes. (a)
Gradient = 2.2 G/cm. (b) Gradient = 0.01 G/cm. For each pair of scans the upper and lower traces were obtained by averaging 5000 or 50,000 scans,

respectively.
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of the sets of 60 projections. Interpolation was used to gen-
erate projections at equally spaced intervals between
—81.56° and 81.56° as required for reconstruction of a
spectral-spatial image.

2.4. Algorithm details

Images were reconstructed on grids of 200 x 200 pixels
using 287 data points per projection. Since our aim was
to compare MEM and FBP algorithms, the same sets of
30 or 60 projections were used for both cases. MEM does
not require projections to be collected with equal angle
increments so there is no need to estimate “missing” pro-
jections as in FBP.

2.4.1. FBP

The missing angle algorithm for FBP [35] was implement-
ed in MatLab 7.0. A Hamming filter was applied to the
experimental projections. To permit the same matrix for-
mats for the FBP and MEM algorithms Radon transforma-
tion matrixes were built with sizes 40,000 x 17220
(40,000 x 8610) for 60 (30) projections, instead of using the
intrinsic MatLab Radon transformation routines. Fortu-
nately, these huge matrices are sparse, and defining them
as the sparse type in MatLab allows use of only 50 (25)
Mb of memory. Otherwise, these matrices would require sev-
eral gigabytes of RAM. The other advantage of doing
Radon transformation by matrix multiplication on the
image in vector form is that it is about twice as fast as the
Matlab intrinsic routines.

2.4.2. Cambridge MEM algorithm [27,36]

As noted in the introduction, imperfections in experi-
mental data may make it impossible to achieve C(f) = M
using the definition of C(f) given in Eq. (2). Therefore an
alternate definition of C(f) that still permits use of the effi-
ciencies of the Cambridge algorithm is proposed.

M

() =Y (R(f)), — D) /o (7)

k=1

Two approaches to selecting ¢S, defined in Egs. (8) and
(10), were examined. In both cases a different g, was calcu-
lated for each projection.

" = g, + [smoothed(e)|,,

where & = R(fmin); — Dr,

k=1,2,....M, (8)
k=1,2,....M. 9)

Practical implementation of this idea shows that better re-
sults are obtained when ¢ is smoothed to eliminate high-fre-
quency noise.

o = ko. (10)

The parameter k was adjusted so that the C(f) = M con-
straint was fulfilled.

The algorithm was implemented as described in ref. [27].
Program code was generated in Matlab using built-in matrix
operations. This approach required the image matrix and

dataset to be aligned column-wise. The images were repre-
sented by vectors of 40,000 elements, while 60 (30) projec-
tions were given by the vector 287 x60=17,220
(287 x 30 = 8610) elements. The image f,,;, was obtained
by minimization of the function C(f) (Eq. (7)) using an iter-
ative procedure in which the next f * ! approximation of
the reconstructed image was found as follows

fe =0 g avet), (11)

where parameter o is calculated to reduce C(f) along the
direction given by the gradient VC:

S4B

LB
where R is the Radon transform operator and D is experi-
mental data.

With f obtained by means of Eqgs. (11) and (12) o is
calculated according to Eq. (8) or Eq. (10). Iterations start-
ed from a flat guess image and nearly flat ‘default’ image.
The guess image f and ‘default’ image fy cannot be identi-
cal. In this case VS =0, would result in a divide by zero
error (see, for example, Eq. 5)

A=Rf" —D; B=RVC(f™), (12)

1. After 10 iterations have been completed, the ‘default’
image f; is replaced by the current image f divided by
10, i.e., fo; = £i/10.

2. After another 10 iterations, fy is replaced similarly.

3. Step 2 is repeated until C(f) = M is reached. The process
is complete, provided that TEST < 0.1.

Similar final images were obtained by different methods
of scaling f to generate f,.

2.4.3. Smith and Stevens MEM algorithm [18]

The iteration process starts with a guess image. Ele-
ments of the image are updated iteratively according to
the equation:

as/af, _ aC/of,
as/af1 ™ “lec/orll

where « is a positive value that defines the length of the step
in the direction of ascending S and descending C. Iterations
are interrupted when convergence stops or its rate becomes
too slow to give improvement in the image in a reasonable
time. In ref. [18] it was suggested that the algorithm should
start from flat guess images that have maximum entropy,
which ensures that the resulting images achieve a small glob-
al extremum. For this study TEST <0.1 was selected. In our
study, an extensively smoothed version of the image gener-
ated by FBP was used as a starting image for this algorithm.

Ji—= fill +a

(13)

3. Results
3.1. Data acquisition

Rapid-scan EPR projections were recorded for a sam-
ple containing tubes of LiPc and of trityl-CD;. Examples
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at high and low gradients are shown in Figs. la and b,
respectively. Note that this direct-detection method gives
the EPR absorption signal [37]. The S/N in the projec-
tions was calculated as the ratio of the amplitude at
the peak of the signal to the root-mean-square noise in
the baseline at the left of the scan. When 5000 scans were
averaged the S/N was 228 at very low gradient and 10 at
a gradient of 2.2 G/cm, which is a much smaller degrada-
tion than occurs when first-derivative spectra are record-
ed [31]. When 50,000 scans were averaged the S/N
improved to 727 at very low gradient and 29 at a gradi-
ent of 2.2 G/cm. The improvement in S/N with increas-
ing number of scans is approximately proportional to
the square root of the number of scans, as expected if
noise is stochastic. The intensities of the signals from
the LiPc and trityl-CD3 samples were selected to make
the amplitudes of features in the image similar. Since
the spatial extent of the trityl-CD; sample is substantially
greater than for the LiPc sample, the amplitude of the
trityl-CDj3 signal in the absence of a gradient is much
greater than for the LiPc sample. Thus, the projections
at low gradient that are shown in Fig. 1b are dominated
by the trityl-CDj3 signal, which can be recognized by the
characteristic '*C hyperfine lines that are separated by
0.166 G.

The quality of the data and of individual projections
can be examined. The image f.;, that fits experimental
data as well as possible is found by minimization of
the function C(f). The Cpnin = C(fmin) 18 a characteristic
of data inconsistency. The lower C;, the better the pro-
jections match the image. The projections obtained from
this ‘best’ image can be compared with experimental
projections to estimate mismatch error for every single
point in the dataset (Eq. 9). In Eq. (9) ¢ is represented
as a 1D vector including all projections. However, it
proved to be very helpful to write the ¢-matrix as a
two-dimensional array, where projections are columns.
This figure clearly shows ‘bad’ projections, which have
greater mismatch between an experimental projection
and the reconstructed image. If ¢ is large for a particular
column, it is likely that something went wrong when this
projection was measured. If it is a frequency shift, the

M. Tseitlin et al. | Journal of Magnetic Resonance 184 (2007) 157-168

image can be improved by correcting this faulty

projection.

3.2. Reconstruction and comparison of images

Images were reconstructed from four datasets: (1) 60
spectra each averaged 5000 times; (2) 60 spectra, each aver-
aged 50,000 times; (3) 30 spectra, each averaged 5000 times;
and (4) 30 spectra, each averaged 50,000 times. Images for
each dataset were reconstructed by four methods which are
denoted as follows:

FBP—filtered back projection,

CMEM-—Cambridge algorithm with ¢ calculated
using Eq. (8),

CMEM2—Cambridge algorithm with ¢°%, calculated
using Eq. (10),

SMEM-—the algorithm, developed by Smith and
Stevens.

In addition four auxiliary images (AUX) were recon-
structed under conditions that correspond to infinitely
large /, and used for comparison with images obtained
with different approaches to estimating ¢°". Quantitative
parameters for each of these algorithms are summarized
in Tables 1-3 and discussed in the text. In all the images
the spacings between the two tubes in the phantom and
dimensions of the tubes are in good agreement with mea-
sured dimensions. The results shown in the Figs. 2-7
emphasize FBP and CMEM for data set (1) which has
the larger number of projections, but poorer signal-to-
noise and data set (4) which has the smaller number of pro-
jections and better signal-to-noise. Figs. 2-7 show images
with their spatial and spectral profiles for these cases.

Table 1 summarizes the y” errors (C) for the reconstruct-
ed images and the TEST for global convergence (Eq. 5).
For each data set C/ Crvp is smallest for the AUX image,
although the noise is higher (data not shown). These
AUX images, which were reconstructed under conditions
that correspond to infinitely large A (Eq. 1), have the best
match with experimental data. The problem with such
images is that all imperfections are incorporated into the

Table 1
Error functions and convergence tests

CMEM CMEM2 SMEM* AUX

5000 50,000 5000 50,000 5000 50,000 5000 50,000
Data® 30 60 30 60 30 60 30 60 30 60 30 60 30 60 30 60
C/Cﬂjpb 0.26 0.76 0.65 1.25 0.4 0.98 0.61 1.27 0.54 1.01 1.61 2.68 0.1 0.3 0.27 0.58
TEST® 0 0 0 0 0 0 0 0 0.1 0.07 0.08 0.05 — — — —

%30 and 60 are the numbers of projections. 5000 and 50,000 are the numbers of averages.
® Ratio of the deviations between the experimental data and projections from the reconstructed image C obtained by each of the MEM algorithms

compared with C for FBP reconstruction.

¢ TEST for convergence to unique maximum entropy image (Eq. (5)), which should be zero in ideal case. Values of TEST less than 0.01 were rounded to

0

9 The starting image was obtained from the FBP image by smoothing it so extensively that it was almost flat.
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Table 2
Ratios of trityl to LiPc peak intensities
FBP CMEM SMEM AUX
5000 50,000 5000 50,000 5000 5000 50,000

Data® 30 60 30 60 30 60 30 60 30 60 60 30 60 30 60
1D Spatial® 1.15 1.12 1.1 1.11 1.29 1.32 1.24 1.22 1.39 1.31 1.32 1.16 1.11 0.98 1.04
2D image® 1.89 1.83 1.78 1.78 2.07 1.87 1.79 1.78 1.9 1.97 1.91 1.92 1.83 1.74 1.75

# 30 and 60 are the numbers of projections. 5000 and 50,000 are the numbers of averages.

® Ratio of intensities of trityl and LiPc peaks in 1D profile obtained by summing the spectral slices in the images.

¢ Ratio of intensities of trityl and LiPc on the tops of the peaks in 2D images.
Table 3
Linewidths* (mG) of signals for trityl-CD; and LiPc calculated from spectral slices

Trityl-CDj3 LiPc
5000 50,000 5000 50,000

Data® 30 60 30 60 30 60 30 60
FBP° 36 35 36 35 51 56 53 53
CMEM® 35 35 35 34 56 52 54 52
CMEM2° 36 34 35 34 53 45 53 50
SMEM*® 34 34 34 34 51 50 49 50
AUX® 36 34 36 34 53 55 56 53
Direct® 35 35 35 35 54 54 54 54

% Linewidths are reported as the full width at half height of the absorption signal. There are 200 data points per spectral slice of 0.34 G. By interpolation

it was possible to calculate linewidths with an uncertainty of about 1 mG.
® 30 and 60 are the numbers of projections. 5000 and 50,000 are the numbers of averages.

¢ Linewidths calculated from spectral slices taken from images reconstructed by the methods defined in the text.

9 Measured directly from EPR spectra for LiPc and trityl.
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Fig. 2. 2D spectral-spatial EPR image of a small tube containing solid LiPc and a larger tube containing an aqueous solution of trityl-CDj3. The centers of
tubes were separated by 11 mm. Each of the 60 projection was averaged 5000 times with scan frequencies of 1 to 8 kHz and a scan rate of 13.9 kG/s. A
Hamming filter was used in conjunction with FBP. No filtering was used for reconstruction by CMEM algorithm. Statistics for the images are shown in

Tables 1-3.

images. MEM is used to find an image that does not fit the  ratio can mean less noise, but could also result from lost
data quite as well but contains less noise and less other  information so the parameter TEST (Eq. 5) must be exam-
imperfections. The ratios C/Cp,, increase in the order ined. The smaller the value of TEST, the closer the image is
AUX <CMEM < CMEM2 < SMEM. Increases in the to the global extremum, which guarantees the maximum
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Fig. 3. Spectral slices through the 2D spectral-spatial image in Fig. 2 for (a) the LiPc signal and for (b) the trityl-CDj; signal at the positions for maximum
signal intensity. The red (upper) and blue (lower) lines are from the images reconstructed by CMEM and FBP, respectively, and calculated by summing
three slices. The green lines (middle) are the corresponding slow-scan lineshapes obtained by Fourier deconvolution of non-gradient rapid scans recorded
with 500 Hz modulation frequency and a 0.6 G sweep width. (For interpretation of color mentioned in this figure the reader is referred to the web version

of the article.)

reduction of useless information for a given misfit C. The
images reconstructed by the CMEM and CMEM?2 meth-
ods give TEST values less than 0.01. Values of TEST for
images generated by SMEM are larger than for the Cam-
bridge algorithm but still are below the tolerable level
TEST = 0.1. The larger values of TEST imply that entropy
is not maximized as effectively by the SMEM method as by
the CMEM or CMEM2 methods.

Images reconstructed by CMEM and FBP are com-
pared in Figs. 2 and 5. The lower noise in the baseline
regions of the images reconstructed by CMEM than by
FBP are evident in the pairs of images. However, in the
regions of highest intensity the noise is actually higher in
the CMEM images than the FBP images because the Ham-
ming filter reduces the noise superimposed on the FBP
image to a greater extent than MEM does. Even so, the
ability of the MEM method to reduce noise in baseline
regions reveals hyperfine structure of the trityl signal even
for cases where it is corrupted by noise in the FBP images
(see Fig. 3).

It is well-known fact that MEM is a non-linear algo-
rithm that can introduce non-linearities [38] in the intensi-
ties in an image, so it is important to check the images. One
measure of the linearity of the intensity scale is the ratio of
the amplitude of the more intense trityl peak to the less
intense LiPc peak (Table 2), which was calculated in two
ways. (a) The spatial slices through the image were summed
(as in Figs. 4-7) and the ratios of the peak heights in these

1D slices are summarized in Table 2, row 1. The expected
value of this 1D ratio, estimated by measuring the ampli-
tudes of the LiPc and trityl peaks for the high-gradient pro-
jections, is 1.12. This calculation can be done because the
EPR signals from two radicals do not overlap. The 1D
peak ratios for the FBP images (Table 2) are very close
to the expected value. For the data sets obtained with
50,000 averages the 1D peak ratios from the CMEM imag-
es are significantly better than from the SMEM images
indicating improved linearity. For the data sets with only
5000 averages the greater noise on the peaks contributed
to poorer peak ratios. (b) Ratios for the average of six
points at the tops of the peaks are summarized in Table
2, row 2, and should be the same for all images. No attempt
was made to correct for superimposed noise. The average
of the ratios for the two FBP images calculated from the
datasets with 50,000 averages is 1.78, which is taken as
the comparison value for other images. The values for
the corresponding AUX images (1.75) are similar. MEM
algorithms represent non-linear distortion which is stron-
ger for noisier datasets. The SMEM algorithm suffers from
nonlinearity to a greater extent than CMEM does.

Table 3 summarizes important spectral information.
Linewidths were determined by fitting Lorentzian line-
shapes to the sum of three spectral slices through the peaks
of intensities for the LiPc and trityl signals in the images
(see Figs. 3 and 6). Although the LiPc signal has a simple
Lorentzian lineshape, the trityl lineshape is more compli-
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Fig. 4. Spatial profiles of the images shown in Fig. 2 obtained by the summation of numerical 2D image matrix along spectral axis. Red lines show MEM
profile; blue lines show FBP profile. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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Fig. 5. 2D image of the same object as shown in Fig. 2 with the same experimental parameters, except that each of the 30 projections was averaged 50,000
times which results in better S/N. Statistics for the images are shown in Tables 1-3.

cated, including C'? sidebands. The regions in the spectra
for the '*C hyperfine lines were not included in the fitting.
The linewidths for the trityl signal in all of the images
agreed with directly measured signals within expected accu-
racy. There was greater scatter in the linewidths for the
LiPc signal (Table 3). The discrepancies are greater for
the CMEM2 and SMEM methods than for FBP or
CMEM. However, in general, the linewidths obtained by
fitting the LiPc spectra are quite good. The linewidths of
the LiPc signal obtained by SMEM are systematically
underestimated (Table 3), which indicates a systematic
non-linearity in intensities. The non-linearity in the SMEM
images can be decreased by starting iteration from a
smoothed FBP image instead of from a flat image (values
not tabulated). However, these images can not be consid-

ered as ones having maximum entropy because values of
TEST are in the range of 0.2-0.3. The '*C hyperfine lines
are better defined by MEM than by FBP and the relative
intensities are in reasonable agreement with slow scan spec-
tra (Figs. 3 and 6).

It is surprising to see how poor the LiPc lineshapes are in
Figs. 3 and 6. For example, the LiPc spectra from the FBP
image are strongly distorted in comparison with CMEM
curve. Although the discrepancies in measured linewidths
for the LiPc signal for CMEM (—2 mG) and FBP (2 mG)
methods are equal, the fit of the Lorentzian lineshape to
the MEM slices is 2-3 times better than to the FBP slices.
It is clear that fitting a known lineshape function to the
spectral slices permits relatively accurate lineshape estima-
tion even from imperfect spectral slices. The sources of
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Fig. 6. Spectral slices, analogous to those in Fig. 3, through the image in Fig. 5 for (a) the LiPc signal and for (b) the trityl-CD; signal. The red (upper) and
blue (lower) lines are from the images reconstructed by CMEM and FBP, respectively, and calculated by summing three slices. The green lines (middle) are
the corresponding slow-scan lineshapes obtained by Fourier deconvolution of non-gradient rapid scans recorded with 500 Hz modulation frequency and a
0.6 G sweep width. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

Intensity (a.u.)

1 1 1 1 L

-1 -08 -06 -04 -02

L L L 1 L L

0 0.2 0.4 0.6 0.8 1
L {(cm)

Fig. 7. Spatial profiles of the images shown in Fig. 6 obtained by the summation of numerical 2D image matrix along spectral axis. Red lines show MEM
profile; blue lines show FBP profile. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

FBP spectral slice distortions are noise and streak artifacts
(see Figs. 2 and 5). The streaks appear because of imperfec-
tions in the data including frequency shifts, the small num-
ber of projections, and the missing angle. The streaks
caused by the small number of projections disappear in
AUX and CMEM images. The streaks from data imperfec-
tions (or, perhaps, from ‘missing’ projections) are equally

seen in AUX and FBP images, but suppressed in MEM
images (see Figs. 2 and 5). Reduction of these artifacts in
CMEM images improves the spatial resolution as shown
in Figs. 4 and 7. The MEM curves are narrower and have
more symmetrical shape than the FBP profiles. The left-
shift of the LiPc peak in the MEM profile relative to the
FPB profile (Fig. 4) is the result of the artifacts in FBP.
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The fact that the tops of the peaks for MEM and FBP 2D
images coincide supports this statement.

4. Conclusions

Two different implementations of the Cambridge MEM
algorithm [27] (CMEM, CMEM2) and the maximum
entropy algorithm developed by Smith and Stevens [18]
(SMEM) were compared with the commonly used FBP
method. The CMEM method has found to give more accu-
rate results than CMEM?2 or SMEM, so the focus is on the
comparison between CMEM and FBP.

FBP is a linear method. As mentioned in the introduc-
tion, both the advantage and disadvantages of MEM orig-
inate from its nonlinear behavior. This study seeks to
determine the pros and cons of MEM for reconstruction
of spectral-spatial EPR images. Figs. 2-7 together with
quantitative analysis given in Tables 1-3 reveal important
differences between the two algorithms. MEM entirely sup-
presses noise in the regions with no useful signals (base
plane) and shows less noise filtering at the top of peaks
in the image, which is a non-linear behavior. On the con-
trary, the linear FBP method spreads noise from projec-
tions evenly over the image. Generally, the FBP images
are noisier than MEM images for noisy datasets. From
the practical point of view it is important to know how this
difference impacts the spectral and spatial information
extracted from the image. Spatial profiles were obtained
by integration of two-dimensional image along spectral
axis. This smoothes random noise and eliminates difference
in noisiness on the tops of the MEM and FBP peaks in spa-
tial profiles. If the goal is to determine the linewidth of the
signal from a species with known lineshape, non-linear fit-
ting can be applied. In this case accuracy of the entire fitted
curve is important and noise is less of a problem than other
distortions. Our results show that spectra obtained by both
FBP and CMEM show similar accuracy, when compared
to directly measured EPR spectra. Thus, the difference in
nonlinear noise distribution over the images does not
strongly impact the linewidth information. Nonlinearity
of the MEM method, however, is significant in spatial pro-
files. Quantitative analysis of the ratios of trityl and LiPc
peak intensities shows stronger nonlinear distortion for
MEM images for noisier data. The weaker LiPc peak is
underestimated in these profiles. In contrast, the ratio of
peaks in FBP-reconstructed images exhibits little variation,
which can be attributed to the linearity of the reconstruc-
tion procedure. However, this does not make spatial pro-
files obtained by FBP method more informative. Images
show streaks around the peaks, which when integrated
along spectral axes contribute to the spatial profile. As a
result there is distorted information about the distribution
of radicals in the sample. A significant advantage of MEM
is that weak trityl '*C hyperfine lines could be distinguished
from noise more readily than by FBP.

In summary, each approach was found to have advanta-
ges and disadvantages. For FBP the advantages are: (i) less

computation time is required, (ii) the relative intensities of
features in the image are more accurate. The disadvantages
of FBP are: (i) the ““star” effect is observed when the num-
ber of projections is small, (ii) projections must be equally
spaced, (iii) imperfections in a small number of projections
adversely impact the whole image, (iv) both noise and
streak-like artifacts in the image distort spin concentration
profile along the spatial axis; For MEM the advantages
are: (i) even with a small number of projections, there is
no “‘star” effect, (ii) less noise in baseline regions of the
image permits recognition of weak signals, (iii) non-nega-
tivity is implicit in the algorithm, (iv) projections do not
need to be at equally spaced angular increments, (v) more
accurate shape of the spatial profile, (vi) better matching
with experimental projections. The disadvantages of
MEM are: (i) it is computationally intensive, (ii) the ampli-
tude scale is nonlinear and amplitudes of weak peaks are
underestimated, and (iii) noise superimposed on peaks is
higher than with FBP. The overall pattern is that FBP
works well when the number of projections is large enough
that the star effect is negligible and signal-to-noise is higher.
MEM has advantages when projections are not equally
spaced, when there are fewer projections, and/or when sig-
nal-to-noise is not as good.
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